SHAPE UK SHOWCAS

Shipping, Hydrogen and Port Ecosystem, UK

Tweet and follow the event@CPCatapult#shapeports

an electrolyser and H₂ compressor company

WELCOME AND INTRODUCTION

9.30-10.00

Dr David Hutchinson

Reader in Environmental Innovation University of Portsmouth

AGENDA

Time	Session title		
	Welcome and introduction		
09.30-10.00	Portsmouth Port Masterplan		
	A high-level introduction to the project, Portsmouth University		
10.00-11.30	Project presentations		
11.30-12.00	Q&A panel session		
	Morning sessions wrap up and online close		
12.00-13.00	Lunch – opportunity to view the electrolyser		
13.00-13.30	Future opportunities		
13.30-15.00	Next steps and future project		
15.00-15.15	Chair closing remarks		
15.15	Networking		

In partnership with:

Funded by:

Department for Transport

IOTICS

PORTSMOUTH PORT MASTERPLAN

Mike Sellers

Port Director Portsmouth International Port

MAKING SPACE FOR A SUSTAINABLE FUTURE 2022 – 2042

POSITIVITY ON THE HORIZON

Our 20-year Masterplan focuses on supporting the future of UK trade and travel

Independent consultants provided detailed market analysis

Extensive stakeholder engagement

Incorporating Freeports status

KEY THEMES

ENVIRONMENT AND SUSTAINABILITY SOCIETY AND ECONOMY RESILIENCE AND SECURITY INNOVATION AND TECHNOLOGY

BEYOND THE PORT

12 - 24 MONTH PLAN

- State of the art pre-gate facilities at outside of the city, looking beyond traditional modal services
- Expansion of unaccompanied trailers and satellite storage
- Reducing congestion on the road network

INNOVATION AND TECHNOLOGY

NEXT LEVEL PORT TETRIS 2 – 4 YEAR PLAN

- Creating automated pre-gate facilities, 50% faster processing
- Upgrade check-in lanes using ANPR
- Improved site layout for efficient flow of freight
- Out bound automation
- Rudmore Square junction and roundabout upgrades to manage port traffic flow
- Additional parking facilities using the council's expanded park and ride

NEXT 5 YEARS

- Junction upgrades at Whale Island Way

ENVIRONMENT, SUSTAINABILITY INNOVATION AND TECHNOLOGY

SUSTAINABLE WANDERLUST

12 MONTH PLAN

Terminal extension to manage an increase in passengers and exclusive lounge facilities

NEXT 5 YEARS

- Berth upgrade so the port can cater for ships up to 300m
- Support an electric ferry service including terminal facilities
- Overhead walkway from terminal to ship
- Provide shore power for ships alongside
- Redevelopment of passenger boarding bridge

RESILIENCE AND SECURITY

STRENGTHENING PORTICO

5 YEAR PLAN

- Respond to future shift of containerisation
- Expand facilities on-site to cater for a range of cargo
- Support employment land developments in the city's Local Plan that make provision for commercial opportunities near to Portico
- An agile port able to support shortsea services

AFTER 5 YEARS

- Upgrade berths and water

PROJECT SUMMARY

- Cruise berth 300m ships — shore power infrastructure ready
- Lo-Lo terminal berth upgrades to AJQ and FHQ— deepened strengthening and realigned for flexibility shore power infrastructure
- Flexible Lo-Lo open storage upgrades removal of cold stores
- 4. Portico terminal expansion — Expanded container consolidation warehouse
- 5. BCP ready and fully flexible
- 6. Terminal extension

- 7. Rudmore Square Junction and round-about upgrades
- 8. Upgraded smart ferry freight gates
- 9. Upgraded junction at Whale Island Way
- **10.** Integrated park and ride facility for ferry and cruise services
- Smart highways and driver notification systems
- 12. Satellite trailer parking and pre-gate facility
- 13. New electric ferry terminal and services
- 14. New passenger boarding bridge and shore power for ferries

PROJECT SUMMARY

- Cruise berth 300m ships — shore power infrastructure ready
- Lo-Lo terminal berth upgrades to AJQ and FHQ— deepened strengthening and realigned for flexibility shore power infrastructure
- Flexible Lo-Lo open storage upgrades removal of cold stores
- 4. Portico terminal expansion — Expanded container consolidation warehouse
- 5. BCP ready and fully flexible
- 6. Terminal extension

- 7. Rudmore Square Junction and round-about upgrades
- 8. Upgraded smart ferry freight gates
- 9. Upgraded junction at Whale Island Way
- **10.** Integrated park and ride facility for ferry and cruise services
- Smart highways and driver notification systems
- 12. Satellite trailer parking and pre-gate facility
- 13. New electric ferry terminal and services
- 14. New passenger boarding bridge and shore power for ferries

SOCIETY AND ECONOMY

VALUABLE PORT

- Expansion investment over £90m
- Will return significant benefits locally and nationally

2022 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	2032 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	2042
£390M*	£739M National Impact	£801N
5,590	10,448 Total Employment	11,333 Total Employment
£189M	£357M Local economic imapct	£387N
2410	4554 Local jobs	4940

 Portsmouth international port masterplan

FUTURE PORT LEADERS

- Members of diversity in maritime
- Encouraging the next generation towards a career at Portsmouth International Port
- Exciting times ahead
- Bold plans not platitudes

MAKING SPACE FOR A SUSTAINABLE, DIVERSE, FUTURE

PORTSMOUTH INTERNATIONAL PORT MASTERPLAN

Portsmouth

FUTURE MARITIME

ARITIME

A HIGH-LEVEL INTRODUCTION TO THE PROJECT, PORTSMOUTH UNIVERSITY

Dr David Hutchinson

Reader in Environmental Innovation University of Portsmouth

PROJECT PRESENTIONS INTRODUCTION

10.00-11:20

Dr David Hutchinson

Reader in Environmental Innovation University of Portsmouth

PORT CHALLENGES

10.00-11.20

Jerry Clarke Pilot/Senior Project Manager **Portsmouth International Port**

SALAMANCA

Portsmouth Commercial Docks

The Camber

The Age of Sail

This is a photograph of a port just before a very major change in what that little port was going to have to provide to keep operating

Portsmouth Commercial Docks

The Camber

Advent of the Steam Age

Coal – Same port, servicing the Navy. The port probably did not see the change coming but the sailmakers would have moved out and the coal merchants moved in

Portsmouth International Port

The Age of Information and of Change

5 Ro-Ro berths, 2 traditional berths. What's around the corner? We were all running forwards to unrestricted growth, we still can. If that growth can be made as Carbon and Air Pollution can be reduced sufficiently.

PORT AIR QUALITY STRATEGY CARBON AUDIT 2018 & 2019

Production of carbon and Air Pollutants Port & Harbour Operations		kgCO2 e	kgCO2	kgCH4	kg N2O
	Kgs	50,073,733	49, 160, 507	19,614	649,418
	Tonnes	50,074	49,161	20	649
	Kgs	60,391,962	59, 520, 937	21,041	803,536
	Tonnes	60, 392	59,521	21	804
	Harbour Operations	Harbour Operations Units Kgs Tonnes Kgs Tonnes	Harbour Operations Units kgCO2 e Kgs 50,073,733 Tonnes 50,074 Kgs 60,391,962 Tonnes 60,392	Harbour Operations Units kgCO2 e kgCO2 Kgs 50,073,733 49,160,507 Tonnes 50,074 49,161 Kgs 60,391,962 59,520,937 Tonnes 60,392 59,521	Harbour Operations Units kgCO2 e kgCO2 kgCO2 </td

Annual Emissions Alongside Berth 2018/2019

26,000t/CO2e

The biggest Winners for quickly decreasing not just the carbon we are pumping out but also improving Air Quality is the provision of shore power to all berths and the obligatory use of shore power where a ship is able to take it and ultimately the rejection of ships that cannot.

Biggest Winners for Carbon Reductions

LED Lighting – Over 60% carbon Saving

Shore Power – 90% carbon saving ad significant Air Quality improvements.

Yes, but what does it mean?

Net Carbon Neutral by 2030

Zero Emission Shipping by 2050

Intensity Based reduction in Carbon Emissions

Measures

- 35Kw Hydrogen Electrolyser on port (CMDC)
- Digital Twin of the Port (CMDC)
- 300HP Hydrogen powered marine engine (CMDC)
- Shore Power Provision
 - Berth 1 1MW
 - Berth 2 10MW
 - Berth 3 5MW
 - Berth 4 5MW
 - Berth 5 4MW
 - North Quay 1MW
 - 30MW needed by 2030

Power to ships from shore – Future 'Cold Ironing' – Shared load with Port Batteries

Ports	Effective time with shore connection	Energy to charge the battery	Power to charge the battery	Hotel load in port	Total power from shore connection
	min	kWh	kWe	kWe	kWe
Portsmouth	80	3 408	2 556	2 569	5 125
Ouistreham	80	3 408	2 556	2 569	5 125
Saint-Malo	125	3 408	1 636	2 569	4 205

Cruise Liners 2Kw to 2.5Kw per passenger berth

Dual 'Bus' bar allows shared load

DNO's unable to supply what's needed

Joining up the doing..... after the joined-up thinking

Measures

Measures

- New LNG Ferries starting in 2022 and 2023
- New Hybrid Ferries starting in 2024 & 2025
- All lighting now replaced with LED
- Sea Water Heat Transfer Pump
- Sea water flushing toilets
- Princess Royal Way (Trafalgar Gate Link Road)
- Shippers Cargo portal
- New sustainable linkspan at berth 4
- Terminal Solar Array
- PESO dual chemistry Energy Storage System
- Freight Management Software Upgrades
- Passenger Information Display Systems (PIDS)
- Electric Charging Points for EV
- Electric Port vehicles

An energy efficient terminal heated in the winter and cooled in the summer using a sea water heat transfer pump, sea water flushing toilets and wind cowls in place of air conditioning.

New Solar Array

Clean Maritime Demonstration Call 2021

CXO300 Technical Specification

CXO300 coxmarine.com

"COX

Vertical Axis Wind Turbines Maximum height is below 15m to avoid planning concerns.

Increase Port Renewable Energy

6000mm

Mast and Turbine in maintenance position

Hydraulic ram used for maintenance

Highlighted area denotes working area for installation and maintenance – 6m mast however see table for required dimensions for other mast sizes

Most Height	Dimension 'H'	Total Length
6m	5015mm	14185mm
15m	13885mm	23055mm
18m	16910mm	26080mm

ELEVATION @ 1:100 (A4)

quiet**revolution**

Diesel Fuel Filtering provides massive reduction in Particulates

Constraint Constraint	Particle Count (particles/mL) ISO 4406 & mod. ISO 11500	Result	Min	Max
The second second	ISO Cleanliness Code	20/19/19	11	11
	> 4µm	9793		
	> 6µm	4978		
	> 10µm	3180		
	> 14 μm	2787		
	> 21µm	2292		
A SULEDINA	> 38µm	28		
	> 70µm	0		
	> 100µm	0		
	Particle Count (particles/mL) ISO 4406 & mod. ISO 11500	Result	Min	Max
	Particle Count (particles/mL) ISO 4406 & mod. ISO 11500 ISO Cleanliness Code	Result	Min / /	Max / /
	Particle Count (particles/mL) ISO 4406 & mod. ISO 11500 ISO Cleanliness Code > 4µm	Result 16 / 14 / 11 544	Min / /	Max / /
	Particle Count (particles/mL) ISO 4406 & mod. ISO 11500 ISO Cleanliness Code > 4μm > 6μm	Result 16 / 14 / 11 544 152	Min / /	Max / /
	Particle Count (particles/mL) ISO 4406 & mod. ISO 11500 ISO Cleanliness Code > 4μm > 6μm > 10μm	Result 16 / 14 / 11 544 152 34	Min / /	Max / /
	Particle Count (particles/mL) ISO 4406 & mod. ISO 11500 ISO Cleanliness Code > 4μm > 6μm > 10μm > 14μm	Result 16 / 14 / 11 544 152 34 12	Min / /	Max / /
	Particle Count (particles/mL) ISO 4406 & mod. ISO 11500 ISO Cleanliness Code > 4μm > 6μm > 10μm > 14μm > 21μm	Result 16 / 14 / 11 544 152 34 12 5	Min / /	Max / /
	Particle Count (particles/mL) ISO 4406 & mod. ISO 11500 ISO Cleanliness Code > 4μm > 6μm > 10μm > 14μm > 21μm > 38μm	Result 16 / 14 / 11 544 152 34 12 5 1	Min / /	Max / /
	Particle Count (particles/mL) ISO 4406 & mod. ISO 11500 ISO Cleanliness Code > 4μm > 6μm > 10μm > 14μm > 21μm > 38μm > 70μm	Result 16 / 14 / 11 544 152 34 12 5 1 0	Min / /	Max ///

GAS	NOX	NO	NO2	SO2	СО
% REDUCTION	44.6	45	72	40	26.66

Port Wide Air Quality Sensors

- 5 sensors around the port measuring, NO, CO2,SO and PM's
- Uses LPWAN not 5G or Wi-Fi
- Local Technologist, full system including software and storage <€30K
- Annual cost is for replacement of sampling units only

PorticoSniffer1 Graph for Device: 1D8BC5 FLC11 @MEGCP B:0097

Between 23/09/2021 and 30/09/2021

PorticoSniffer1 Graph for Device: 1D8BC5 FLC11 @MEGCP B:0097

Between 23/09/2021 and 30/09/2021

The Air Quality Standards Regulations 2010 require that concentrations of PM in the UK must not exceed:

- An annual average of 40 μ g/m³ for PM10;
- A 24-hour average of 50 µg/m³ more than 35 times in a single year for PM10;
- An annual average of $25 \,\mu g/m^3$ for PM2.5.

PorticoSniffer1 Graph for Device: 18E141 FLC49 @Berth4 C:0098

Between 05/09/2021 and 06/09/2021

The readings above show 84.6 and 64.1 for PM10

Before this date a port could carry on as usual, relying on local authorities to advise them when emissions start exceeding local or national maximum limits.

Since this date, since the first death in the UK ascribed even in part to poor Air Quality, the usual excuses no longer apply.

Not measuring because you do not want to know the answers is no longer a valid management strategy in the face of new corporate liabilities, most especially with fine particle emissions.

Search jobs Sign in Q Search The UK edition ~

Air pollution a cause in girl's death, coroner rules in landmark case

Coroner says failure to reduce pollution levels to legal limits was factor in death of Ella Kissi-Debrah, who had severe asthma

Llla Kissi-Debrah lived within 30 metres of London's South Circular road. Photograph: PA

A coroner has made legal history by ruling that air pollution was a cause of the death of a nine-year-old girl.

The first UK Carbon Trading scheme that was auctioned in May this year of 6 Million allowances sold at £43.99 Per tonne to just 4 buyers – This table shows a Conservative 10% p.a. rise.

Shore Power

Because if you want to be Net Carbon Neutral you are going to have to offset.

If we had to offset this year purchase costs would be in the region of £1M

Collaboration

You don't need to go it alone.

The port has been fortunate in being at the Centre of a vibrant City with a newly invigorated University with an International standing. Current collaborations include:

- Portsmouth University (CMDC)
- Brighton University (SHAPE CMDC)
- The Connect Places Catapult
- The Energy Catapult
- B4T
- Knownow
- Iotics
- Lloyds Register
- Solent Southampton University (PECS)
- Bournemouth University (SPEED)
- Marine South East (PESO)
- InnovateUK

Moving

Forward

- 1. Continuous Annual Carbon Audit
- 2. Continuous Air Quality Sensing
- 3. Continuous Grant Applications
- 4. Lobby for local off-setting
- 5. Co-ordinate Carbon credit management
- 6. Lobby to Push mitigation up the control hierarchy
- 7. Push PIP forward as a 'laboratory' port
- 8. Share Air Quality data using visualization
- Increased co-operation with Universities and other (self-funded) research organisations

10. Turn around the way we look at doing business

HYDROGEN PRODUCTION WORKSTEAM

10.00-11.20

Dr Amit Roy CEO ENGAS Global Ltd

An introduction to the technology deployed through the trial and key findings.

Dr Amit Roy

Founder & CEO, Engas Global Ltd

Which one is more energetic? 1 It diesel vs 1 It hydrogen at 350bar?

diesel has 10 times more energy than 1lt H₂ stored at 350bar.

Which one is more energetic? 1 It diesel vs 1 It LIQUID hydrogen?

diesel has 4 times more energy than 1lt liquid H₂.

My experience

Engas Global Ltd, Founder, CEO, **electrolyser, hydrogen compressor, hybrid power**, system integration. Developed the UK's first wind-solar hydrogen field demonstration project at Loughborough in 2002 (PhD research).

Engas UK Ltd, Founder/CEO: Biogas upgrading to bio-CNG for EV charging & refuelling.

University of Portsmouth: Senior Lecturer, School of Energy and Electronic Engineering; Course Leader of an industry focussed BEng / MEng degree programmes on renewable energy engineering.

2017-ongoing: Member of UK working group OIML on Gas Metering for Product safety & standards, appointed by BEIS, the UK Govt.

2015-2017: Member of green hydrogen standards committee, appointed by the Department of Business, Energy & Industrial Strategy- BEIS- UK Govt.

AFC Energy Plc (2006-2009), Chief Scientist, Head of Fuel Cells Division, Business Development manager, I developed fuel cells stacks & systems (balance of plant).

We are an energy storage & system integration company, offering:

1. A lower cost, modular electrolyser for green hydrogen production to displace diesel for multi-modal application e.g., H₂ refuelling of boats and vehicles, & shore-power for charging of electric boats and EVs.

2. A hydrogen compressor for low-cost hydrogen storage.

3. Consultancy services and feasibility studies to integrate hydrogen energy within an existing system including cost analysis, engineering specification & system engineering services.

4. Supporting PhD, at the School of Energy & Electronic, University of Portsmouth.

Topic: Hydrogen production using electrolysers powered by wind turbines and solar PV for grid balancing, refuelling of vehicles & injecting hydrogen to the gas-grid to decarbonise the heating sector.

Engas Global's integrated electrolyser & compressor at Portsmouth International Port,

BEL

Modular, containerised, plug and play, rapid installation.

Electrolyser & H2 compressor at Portsmouth International Port, UK.

Engas Global

an electrolyser and H2 compressor company

350bar Hydrogen refueller

Engas Global

an electrolyser and H₂ compressor company

Hydrogen & oxygen vents, ventilation and cooling system

Electricity cost of hydrogen

an electrolyser and H₂ compressor company

It takes about 50kWh electricity, and 11.2 litre water to make 1kg H_2 .

1kg hydrogen= 3.78lt diesel on energy content basis.

The electricity cost @ 1pence/kWh from solar PV= 50kWh *1pence/kWh = $£0.5/kg H_2$. (equivalent diesel price=£6/gallon),

Also 7.8kg O_2 is produced as free by-product for every 1kg H_2 .

System integration & hybrid power for smarter-grid balancing

We provide system engineering solution, system modelling, scenario forecasting of energy systems, feasibility studies for scaling up or down.

Hydrogen safety

Hydrogen safety

In a ventilated

space hydrogen will

disperse 5 times

faster than LPG

(propane) due to

the higher diffusion

coefficient of

hydrogen than LPG.

Comparison of flammabilit			ity
	Hydrogen	Natural Gas	
Flammability in air (Lower flammability limit - Uper flammability limit)	4% - 75%	5% - 15%	2.15% - 9.6%
Explosive limits in air (Lower explosion limit - Uper explosion limit)	18.3% - 59%	5.7% - 14%	1.4% - 3.3%
Most easily ignited mixture in air	29%	9%	2%
Flame temperature (°C)	2045	1957	1977
	Comp Flammability in air (Lower flammability limit - Uper flammability limit) Explosive limits in air (Lower explosion limit - Uper explosion limit	Comparison of the second of th	Comparison of flammabilHydrogenNatural GasImage: Plammability in air (Lower flammability limit)4% - 75%5% - 15%System flammability limit)4% - 75%5% - 15%Explosive limits in air (Lower explosion limit)18.3% - 59%5.7% - 14%(Lower explosion limit)29%9%Most easily ignited mixture in air29%9%Flame temperature (°C)20451957

Source: https://image.slidesharecdn.com/whyhydrogen-131024105342-phpapp02/95/why-hydrogen-5-638.jpg?cb=1382612096

The flammability range for hydrogen is 4%-75% by volume in air but for natural gas, it is 5%-15% by volume in air, which means natural reaches its higher explosion limit well ahead of hydrogen gas.

The LPG, Liquid Petroleum Gas such as propane, has the flammability range from 2.15% to 9.6%, which means a small leak of LPG reaches to its higher explosion limit rapidly; and LPG being heavier than air, settles at the bottom of the floor and does not get dispersed easily.

Contacts

an electrolyser and H₂ compressor company

Dr Amit Roy Founder, CEO Engas Global Ltd 76 Bennetts Road Horsham West Sussex, RH13 5JZ, UK Ph:0044-74 269 04 789 aroy@en-gas.com

www.en-gas.com

HYDROGEN VESSELS WORKSTREAM

10.00-11.20

Dr Penny Atkins

Principal Research, Fellow Advanced Engineering Centre University of Brighton

James Eatwell

Head of Research and Development **Cox Powertrain Limited**

This SHAPE work package aims to demonstrate a retrofit hydrogen dual fuel system for Cox's diesel outboard engine

Work package objectives

Demonstrate a retrofit solution for up to 50% hydrogen substitution

Develop a roadmap for future development

Cox CXO300 engine specification

Power	220 kW (300hp)
Weight	393kg
Displacement	4.4L
Cylinders	V8
Aspiration	Twin turbochargers with electronic boost control Water-to-air charge cooling
Fuel system	Electronically controlled high pressure common rail fuel injection
Emissions compliance	IMO Tier 2, EPA Tier III, EU RCD

The team used simulation to understand hydrogen flows and combustion

Example simulation results: Understanding the effect of injector location on hydrogen distribution

66

Minimal engine hardware changes were made for this retrofit solution, a bespoke control system was designed for the hydrogen system

Bespoke hydrogen injection controller developed to minimise turnaround time with integrated control of a "fail-safe" on vessel hydrogen storage & delivery system Inlet manifold based hydrogen delivery system developed to operate in parallel with existing diesel fuel injection hardware

The demonstration vessel has a range of new systems for hydrogen operation, and has been retrofitted by Subsea Craft

ZOX

University of Brighton

The work completed in this project informs Cox's future fuel strategy and supports University of Brighton's research on clean propulsion

Next Steps Future Opportunities University of Brighton are planning journal and Work with Portsmouth International Port to conference dissemination of this work and complete regulatory permissions for testing applications for further funding with Lloyds Register and Maritime Coastguard Agency Data and learning gathered from this project will be used to inform Cox's ongoing R&D Final installation and commissioning of the programme, particularly as regards to the completed hydrogen propulsion system future potential implementation of a hydrogen Comprehensive programme of on vessel product testing to determine: Hydrogen combustion performance of the 「COX ※ University of Brighton prototype hardware ii. Performance of the bespoke hydrogen

control and delivery systems

CLEAN PORT SYSTEMS

A digital twins ecosystem and novel technologies approach to surfacing data for analysis and insights

Sophie Peachey Head of Customer Success IOTICS

Alex Barter Managing Director Barter for Things

IOTICS

SECURE SELECTIVE DATA SHARING

24 March 2022

SOPHIE.PEACHEY@IOTICS.COM

COPYRIGHT © 2022 IOTIC LABS LTD.

IOTICS

Our Product IOTICSPACE

"[IOTICSpace] facilitates cross-boundary data exchange between multiple parties"

- Vikki Williams, Digital Lead Water, Arup

Approach SURFACING DATA WITH A DIGITAL TWINS ECOSYSTEM

- Secure
- Flexible
- Extensible

IOTICS

SURFACING DATA WITH A DIGITAL TWINS ECOSYSTEM

- Everything is a twin
- Driven by search
- Described by semantics
- Virtualised data interactions
- Data is Findable, Accessible, Interoperable, Reusable

A DIGITAL TWIN ECOSYSTEM

UoP

Analysis

IOTICS

IOTICS

SHAPE-UK / CLEAN MARITIME THANK YOU FOR YOUR TIME

COPYRIGHT © 2022 IOTIC LABS LTD.

Any questions? sophie.peachey@iotics.com

The Value of Digital

\equiv Air Quality Map

Port Map

SAFETY AND REGULATION WORKSTREAM

10.00-11.20

Charles Haskell

Programme Manager Lloyd's Register Maritime Decarbonisation Hub

Shipping, Hydrogen And

Port

Ecosystems, UK

IMO's 2013 definition, updated by UNCTAD 2019

"sustainability in maritime transport entails, among other features, the ability to provide transportation infrastructure and services that are:

SafeFuel-efficientSocially inclusiveEnvironmentally friendlyAccessibleLow-carbonReliableResilient to shocks and
disruptions

- High gravimetric energy density
- Low volumetric energy density
- Liquid cryogenic storage at -253 C, 1 bar
- Flammability, invisible, high temperature flame
- form explosive mixtures with air

A transition involving a wider system

Putting shipping into the wider energy context as we transition to alternative energy sources and technologies

Shipping, Hydrogen And Port Ecosystems, UK

Thank you

Contact details: Name Charles Haskell

Email Charles.Haskell@lr.org

SCALE UP ROADMAP

How Hydrogen, Shore Power and Digital Twin can deliver benefits to the port and associated operation

Richard Holland Principal Engineer **Connected Places Catapult**

Christopher Brook Senior Systems Engineer **Connected Places** Catapult

Scale up roadmap: how hydrogen, Shore Power and Digital Twin can deliver benefits to the Port and associated operations

Richard Holland & Chris Brook New Mobility Technologies

Connected Places Catapult

Vision 2028

Aims

- ➢ Significantly increase Air Quality
- ▶ Net Carbon Neutral operations by 2030
- > Doubling the economic value to the local area

How

- Through a blended mix of Electrification, Digitisation and introducing new fuels such as Hydrogen
- Investing in future technology, new ways of operation and championing new partnerships across industry.

Results

- ➢ Reduced Emission increasing air quality
- ➢ Growth in the local and wider economy
- Social and other health benefits

Shore Power enablers

Key partnerships➢ Industry

- > SMEs
- ➢ Academia

Funding

- > Grants
- Collaborative R&D

Skills

- ➢ Knowledge sharing
- Cross-sector learning

Multi-mode Hydrogen-enablers

Key partnerships
Industry
Royal Navy
SMEs
Academia
Regulators / MCA

- Road freight
- Rail freight
- Zero emission flight

Digitisation enablers

Key partnerships

- ≻ Industry
- > Royal Navy
- > SMEs
- ➤ academia

Data ➢ Availability ➢ "Living laboratories" ➢ Energy generation ➢ Microgrid optimisation

Connected Places Catapult

Solent Regional Benefits

Environmental

- > Air, Water & Land Quality
- ➢ Biodiversity
- Noise reduction
- Historic environment maintenanceEconomic
- ➢ Green Grant funding
- Reduction in potential carbon taxes
- Commercially attractive
- Industry growth opportunities

Social

- Public Health
- > Worker Welfare
- Customer Experience

Connected Places Catapult

Benefits Local

Portsmouth International Port

Economic

- Port Customers & operators
- ➢ Growth attractiveness
- Reduced operating costs (fuel/ maintenance)
- ➢ Funding opportunities

Environmental

- > Air, Water & Land Quality
- > Biodiversity
- Noise reduction
- Historic environment maintenance

Social

- ➢ Worker's wellbeing
- > Public Health
- Customer attraction

Barriers

What's stopping this all from being done right now? (Thought provoker for the creative session later!)

- Cost of hydrogen production and limited space for generation and storage
- Limited Hydrogen powered vehicles and lack of certification processes
- Immature "end-to-end" transport systems thinking and lack of standardisation
- Unwillingness for data sharing between stakeholders
- Limited investor confidence who are seeking proof of positive returns on investment and a strong business case

Thank you

richard.holland@cp.catapult.org.uk christopher.brook@cp.catapult.org.uk

Q&A PANEL SESSION

Chaired by: Tom White Ecosystem Director Maritime and Ports Connected Places Catapult

Dr Penny Atkins Principal Research, Fellow Advanced Engineering Centre University of Brighton

Alex Barter Managing Director Barter for Things

Richard Holland Principal Engineer Connected Places Catapult Jerry Clarke Pilot/Senior Project Manager Portsmouth International Port

James Eatwell Head of Research and Development Cox Powertrain Limited

Charles Haskell Programme Manager Lloyd's Register Maritime Decarbonisation Hub

Christopher Brook Senior Systems Engineer Connected Places Catapult

11.30-12.00

Dr Amit Roy CEO ENGAS Global Ltd

Sophie Peachey Head of Customer Success IOTICS

MORNING SESSION WRAP UP AND ONLINE CLOSE

Dr David Hutchinson

Reader in Environmental Innovation University of Portsmouth

THANK YOU FOR ATTENDING

LUNCH

OPPORTUNITY TO VIEW THE ELECTROLYSER

INTRODUCTION

Tom White

Ecosystem Director Maritime and Ports Connected Places Catapult

FUTURE OPPORTUNITIES

Opportunities for the Solent, Portsmouth University

Sarah Duckering

Director of Research and Innovation Services **University of Portsmouth**

Innovation in the Solent

ShapeUK Workshop 24th March

Sarah Duckering Director of Research and Innovation Services

Hampshire is a county unparalleled in England, an economic powerhouse in its own right.

Innovation Assets

Images courtesy of Hampshire Story

Centres of Research and Innovation

National Oceanography Centre

SOLENT UNIVERSITY

SOUTHAMPTON

UNIVERSITYOF PORTSMOUTH

Innovation Spaces

Courtesy of BAE Systems Plc

Innovation People and Networks

Innovation Ecosystem

- Government co-operation
- Housing and Land Use policies
- Digital, Civic and Open Data platforms
- Larger firms and future growth sectors

- Enterprise-friendly pathways and regulation
- Proactive and risk taking knowledge anchors
- Skills and talent appeal
- Connectivity to markets
- Access to capital

Innovation Ecosystem Enablers

- Government co-operation
- Housing and Land Use policies
- Digital, Civic and Open Data platforms
- Larger firms and future growth sectors

- Enterprise-friendly pathways and regulation
- Proactive and risk taking knowledge anchors
- Skills and talent appeal
- Connectivity to markets
- Access to capital

Innovation Opportunities

- Solent Freeport
 - Freeports will
 - create hotbeds of innovation
 - Demonstrate a halo effect in the region
- Solent Maritime Innovation Gateway (Solent MIG)
- Government commitment
- Can/will we respond?

Thank You

FUTURE OPPORTUNITIES

13.00-13.30

Role of Ports in Decarbonisation, Connected Places Catapult

Tom White

Ecosystem Director Maritime and Ports Connected Places Catapult

Wednesday, March 30, 2022

Innovationin Maritime

Tom White Ecosystem Director – Maritime and Ports

Cities, transport and place leadership

Our Innovation imperatives

A System of Systems Innovation Hub

Grow SMEs and commercialise research

Accelerate Net Zero Transition

Stimulate Cross-Sector Opportunities

Supply chain efficiency and resiliency

Grow global market presence

Our ecosystem

Like many sectors, across themes and regions our relationships and interactions across maritime and ports stakeholders can be diverse, inhomogeneous and complex.

BUT, stakeholders can generally be compartmentalised into different roles that enable active ecosystems, characterised by how the ecosystem functions to <u>achieve a</u> <u>greater purpose</u> than the individual needs of its stakeholders, e.g.:

- Regional economic growth
- Net zero transition
- Digitalisation of port processes
- Resilient supply chains
- Stimulating regional FDI

UK SHORE and CMDC 2

- Government launches new unit, UK SHORE, to tackle shipping emissions and advance the UK towards a sustainable shipping future
- £206 million new funding to accelerate research into and development of clean maritime technologies and create skilled jobs across the country
- Clean maritime competition given multi-year extension for UK organisations to accelerate zero emission shipping technologies

News story

DfT launches UK SHORE to take maritime 'back to the future' with green investment

Office dedicated to making maritime greener will pioneer new technology that could make journeys by sea as green as they were hundreds of years ago.

From: Department for Transport, Robert Courts MP, and The Rt Hon Grant Shapps MP Published 10 March 2022

Freeports

- Stimulate significant economic, technological and social impact
- Attract investment through targeting a specialism/niche based on regional and nationally linked ecosystems
- Stimulating regional growth and development
- Wider systemic impacts through innovation across supply chains
- Support the transition to Net Zero
- Innovation Hub at their core to support the growth of key sectors and accelerating the commercialisation and exploitation of UK IP

Plans for new Solent Freeport worth billions to Portsmouth to take a leap forward

COUNCILLORS in Portsmouth are set to approve the final business case for the Solent Freeport later this month ahead of its submission to the government – in a move civic chiefs hope could bring billions to the economy.

Solent Maritime Innovation Gateway

CPC Maritime Innovation Flagship 2022

Get in touch: <u>Thomas.White@cp.catapult.org.uk</u>

Maritime and Ports

Tom White Ecosystem Director Maritime & Ports Thomas.White@cp.catapult.org.uk

NEXT STEPS AND FUTURE PROJECTS

13.30-15.00

Tom White

Ecosystem Director Maritime and Ports Connected Places Catapult

Dr David Hutchinson

Reader in Environmental Innovation **University of** Portsmouth

Next Steps and Future Projects - activity

- ▶ 1.5 hours in total
- ➤ ~ 65 minutes on tables
- \succ ~25 minutes facilitators feedback to the room
- Each table is assigned one of the 3 technologies
- ≻ Hydrogen
- ➢ Electrification / Shore power
- ➢ Digitisation

(Consider both technology progression and the business case aspects)

- What should be done next to build on the Solent's strengths and the outputs of SHAPE UK?
 - How aware of SHAPE UK were attendees before today?
 - Would you engage with SHAPE UK going further?
- ➤ Who else needs to be involved?
- ➤ How will this benefit the port and the region?
- Market awareness and route to market (potential outside of reducing emissions)
- ➤ What is the wider impact?

CHAIR CLOSING REMARKS

15.00-15.15

Dr David Hutchinson

Reader in Environmental Innovation University of Portsmouth

In partnership with:

UNIVERSITYOF PORTSMOUTH Funded by:

Department for Transport

THANK YOU FOR ATTENDING

UNIVERSITY OF PORTSMOUTH

Funded by:

Department for Transport

IOTICS

NETWORKING

SHAPE UK

Shipping, Hydrogen And Port Ecosystems, UK

Ж

Ŵ Department for Transport