The role of physical testing in the CAV engineering lifecycle

Tim Edwards

Senior Consultant, CAV Technologies. HORIBA MIRA

© HORIBA MIRA Ltd. 2019

MUSICC Symposium 24th June 2019. Milton Keynes, UK

Integrated CAV Test Eco-System

UKCITE & Midlands Future Mobility

TIC-IT

Test distribution

Motivation: (1) Test early (Reduce rework cost) (2) Test virtually (Reduce test cost)

Test Gaps

We can't test all the requirements at this level: Test equipment not capable System integration level

Correlation

Some element of the system or environment was approximated - we devise tests to carry out at later stages to seek correlation

Public environment

Capture real scenarios and failure modes Particularly for perception systems

- Highly automated driving trials (SAE L4) already live – under UK Code of Practice
- Not a viable means for safety assessment
 - Billions of miles to make a statistical argument about system failure rates*

Virtual

Required to address the volume of test scenarios
Accuracy and realism of models can be a limiting factor
Different levels of abstraction for different test activities

Controlled environments

Characterise models, and demonstrate correlation of simulation results Validate system integration and demonstrate functionality in controlled conditions

Proving ground developments (Park-IT and TIC-IT)

Urban, interurban, highway and controllability scenarios

7

Proving ground test automation

© HORIBA MIRA Ltd. 2019

A hybrid approach: Vehicle-in-the-loop

Cooperative Merge Scenario

Cooperative Platoon Emergency Stop Scenario

Acknowledgements

MIDLANDS

FUTURE

MOBILITY

Innovate UK

© HORIBA MIRA Ltd. 2019

ZENZIC^²

Trusted Intelligent CAV

Summary

- All test activities have limitations and dependencies, which need to be addressed collectively Simulation is critical - only practical way to address scale - but still just one piece of the puzzle New test tools, assets, and facilities to exercise CAV technologies at component, system and vehicle level – in simulation, laboratory and proving ground conditions
 - New processes for test planning, allocation, correlation and validation -

Contact Details

Tim Edwards BEng (Hons), MPhil, CEng, MIET

Senior Consultant Connected and Autonomous Vehicles

Direct T: +44 (0)24 7635 5484 M: +44 (0)7787 280164 E: tim.edwards@horiba-mira.com

HORIBA MIRA Ltd. Watling Street, Nuneaton, Warwickshire, CV10 0TU, UK

T: +44 (0)24 7635 5000 F: +44 (0)24 7635 8000

www.horiba-mira.com

