

Overview of the research activity of the CASCADE project

November 2019

Engineering and Physical Sciences Research Council Mario Ferraro M.Ferraro@soton.ac.uk

CASCADE

Complex Autonomous Aircraft Systems Configuration, Analysis and Design Exploratory

- The goal of CASCADE is to accelerate the exploitation of aerial robotics across a wide range of science and industry applications
- Five-year project (currently in year two)
- It has already produced 13 scientific publications (5 journal papers and 8 conference papers) and several conference talks
- It has attracted £1.43 M of external funding, £800 k of which in monetary contribution from industrial sponsors

Single-Operator Infrastructure Inspection

Use of advanced mission planning and automation to reduce the personnel necessary for inspection in high risk environments

Behaviour-tree-based mission planning

Use game AI concepts to realise a *standard command system* for various drone missions

Agile design space exploration

- Open source aircraft conceptual sizing tool for rapid trade-off analysis and uncertainty quantification
- Rapid design-build-test cycles
- Automatic flight test reports that fuses relevant weather data, autopilot logs, electronic checklists, etc.

The University of Mancheste

6

Low-cost high-reliability long-range cargo

- 350 kg MTOW
- 100 kg of cargo
- 1000 km range
- Low-cost construction technology
- Over-actuated fault-tolerant architecture
- Masterless distributed flight controllers
- No single point of failure
- From concept design to flying prototype in 12 months
- Currently undergoing BVLOS flight trials

Imperial College

London

Southampton

MANCHESTER

7

Drone networks for scalable operations and comms backup

Full

Infrastructure

++++

Grid World

- Demonstrate and evaluate enabling technologies for routine and ubiquitous BVLOS operations.
- Research context: understanding of how choice of communication strategy impacts cost and complexity of achieving required levels of safety.
- Research method: multiagent simulation, flight demonstration.
- Example outcome: Demonstration of mesh networking to allow full connectivity of a UK wide drone distribution system

Sparse

Infrastructure

UK Topology

Emerging security threats

9

- Goal: To evaluate the emerging security threat from small high performance drones and demonstrate innovative means of physical interdiction
- Background: drone regulation encourages good behaviour but a small number of nefarious users have a disproportionate negative impact on wider society.
- Technical challenge: Geofencing, jamming and existing physical interdiction methods can easily be bypassed by criminals
- Research method: Dynamic simulation and flight test
- Example outcome: prediction of drone extreme performance capabilities

Direct:

Controlled taking down

one-capturing drone

Captur

Indirect:

Signal interference

Geofencing

3

ALL AND

v U

unication interference

Direct:

Directed energy

BVLOS remote sensing in extreme environments

- Repeated ash collection from Fuego, Guatemala at >10,000 ft AGL
- Repeated plume and fumarole gas measurement in Papua New Guinea
- Automated plume detection and real-time onboard re-routing

Aerial-aquatic robot concepts

Aerial-aquatic robot concepts

- New solutions for aerial-aquatic mobility
 - Flying-diving
 - Flying-sailing
- Development of multi- configuration winged robots •
 - Hybrid structure and control
 - Ultralight composite design
 - Autonomous operation framework
- Mathematical models •
 - Multi-modal: flight, diving, sailing, morphing, phase transitions
 - Validated experimentally
- Simulation & control
 - Stability & dynamics
 - Multi-modal control
- Water impact experiments
 - Multi-phase aerodynamics
 - Design study: geometry & surface coating

Imperial College London

CA

Southampton

Autonomous Fleet Task Allocation

University of BRISTOL

- Decentralised task allocation for agricultural applications
- High-level drone with image processing and task allocation capabilities
- Low-level drones receiving updated flight plans through SMS messages

C A S C 🄈 D E

CASCADE Collaboration Workshop

Snowdonia Aerospace Centre, Llanbedr, June 2019

- 75 people
- 40 UAVs and 1 manned aircraft
- up to 8 aircraft airborne from 5 different operators simultaneously

Snowdonia Aerospace Centre, Llanbedr, June 2020

BVLOS trials!

SEEDPOD

Simulation Environment for the Evaluation of Drone Policies and Optimal Deployment rules

Decision Variables Airspace rules Separation rules Zone limits Number of operators/ drone Flight Patterns and routes Maintenance and health monitoring policies Airworthiness rules Operator approvals

Inputs

Model boundaries Weather models Traffic patterns and density (Manned and unmanned) Platform types Zone categories Map (GIS) data Communications infrastructure and limitations Systems reliability data Position uncertainty scenarios

Questions?

Please visit: <u>www.cascadeuav.com</u>

Contact us at: <u>https://cascadeuav.com/contact</u>

Engineering and Physical Sciences Research Council