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cranfiela | AUtONOmMous Systems

University

» Perception: detection with deep learning
models, multi-target tracking and data
association.

= Sensor Fusion architectures (distributed
architectures).

= Task allocation.
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cnraa | ONUTflePointNet: An Efficient Neural Network for Point Cloud Analysis via
onvessity | Group Convolutions
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Hangar of the future

University

= Automated inspections
= Sensor fusion
» Data analytics
= Predictive maintenance

UAV inspection (using RGB or IRT cameras)

HANGAR
OF THE FUTURE
DEMONSTRATOR

Less time in the hangar,
more time in the air

Intelligent robots
and drones carry
out more detailed

inspections.

Automatic inspection
and data collection

Upon entering the hangar, cameras perform a
complete scan of the aircraft to inspect it for damage.

Data storage
and predictive maintenance

The aircraft is released and maintenance data is digitally
archived and stored where it's needed: inside the aircraft,
hangar, or at the airline or manufacturer’s premises.

Using advanced data analytics,

the data generated can be used to
perform predictive maintenance,
allowing airlines to boost maintenance
efficiency and keep costs to a minimum.

IMAGE DATABASE

Image Comparison

*  Defect Detection and
sizing

*  Geometry Patch
calculation

AUTOMATIC REPAIR

Centre for A

onomous and Cyber-Physical Systems

planning and
e rc:l-time supervision
All aircraft-related data

i transferred to the data
management system.

Scan width (mm)

Automated task

A state-of-the-art interactive
control room displays the
status of maintenance tasks
as they are performed,
allowing task planning to

be continuously optimised.
Customers can also track the
progress of the maintenance
being performed.

Data is automatically analysed and
broken down into tasks. Tasks are
assigned to workers, who receive
real-time notifications on their
mobile devices.

Streamlined maintenance

Workers’ wearable devices provide access to all necessary
information to perform tasks including technical and training
documentation. Devices are equipped with augmented reality
capabilities that help them perform and report on tasks, thus
eliminating the need for paper.

The mobile devices connect to
other smart tools to perform
specific tasks. The results are
integrated seamlessly into the
overall maintenance plan.

3D printers are used to print special maintenance
tools or spare parts on the spot as needed.
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Using data analyse patterns

AIRMES
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Contextualised Documentation
Dispatch assessment

Augmented/Virtual Reality
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COLLABORATIVE
ENVIRONMENT

Configuration management

Maintenance Planning Of
Data Analytics

Knowledge Database
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Pattern Analysis

Identify unusual patterns of fault frequency across the fleet aircraft = Early warning for potential issue
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Local Patterns of Each Fault Type
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Fault types that exhibit
. abnormal patterns
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Correlation Analysis <Analysis Results>
Identify correlated fault types in term of occurrence pattern — High-level fault prognosis
<Time Series Data> <Binary Vector > <Correlation Analysis>
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4 Data Mining Knowledge Based System K-means algorithm

Machine Learning Decision Trees Support Vector Machine

\Density—Based Clustering Self-Organizing Map Hill Climbing Algorithm )
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